Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Discriminative Speaker Representation via Contrastive Learning with Class-Aware Attention in Angular Space (2210.16622v3)

Published 29 Oct 2022 in eess.AS and cs.SD

Abstract: The challenges in applying contrastive learning to speaker verification (SV) are that the softmax-based contrastive loss lacks discriminative power and that the hard negative pairs can easily influence learning. To overcome the first challenge, we propose a contrastive learning SV framework incorporating an additive angular margin into the supervised contrastive loss in which the margin improves the speaker representation's discrimination ability. For the second challenge, we introduce a class-aware attention mechanism through which hard negative samples contribute less significantly to the supervised contrastive loss. We also employed gradient-based multi-objective optimization to balance the classification and contrastive loss. Experimental results on CN-Celeb and Voxceleb1 show that this new learning objective can cause the encoder to find an embedding space that exhibits great speaker discrimination across languages.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.