Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A pruning method based on the dissimilarity of angle among channels and filters (2210.16504v1)

Published 29 Oct 2022 in cs.CV and cs.LG

Abstract: Convolutional Neural Network (CNN) is more and more widely used in various fileds, and its computation and memory-demand are also increasing significantly. In order to make it applicable to limited conditions such as embedded application, network compression comes out. Among them, researchers pay more attention to network pruning. In this paper, we encode the convolution network to obtain the similarity of different encoding nodes, and evaluate the connectivity-power among convolutional kernels on the basis of the similarity. Then impose different level of penalty according to different connectivity-power. Meanwhile, we propose Channel Pruning base on the Dissimilarity of Angle (DACP). Firstly, we train a sparse model by GL penalty, and impose an angle dissimilarity constraint on the channels and filters of convolutional network to obtain a more sparse structure. Eventually, the effectiveness of our method is demonstrated in the section of experiment. On CIFAR-10, we reduce 66.86% FLOPs on VGG-16 with 93.31% accuracy after pruning, where FLOPs represents the number of floating-point operations per second of the model. Moreover, on ResNet-32, we reduce FLOPs by 58.46%, which makes the accuracy after pruning reach 91.76%.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.