Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hybridization of filter and wrapper approaches for the dimensionality reduction and classification of hyperspectral images (2210.16496v1)

Published 29 Oct 2022 in cs.CV

Abstract: The high dimensionality of hyperspectral images often imposes a heavy computational burden for image processing. Therefore, dimensionality reduction is often an essential step in order to remove the irrelevant, noisy and redundant bands. And consequently, increase the classification accuracy. However, identification of useful bands from hundreds or even thousands of related bands is a nontrivial task. This paper aims at identifying a small set of bands, for improving computational speed and prediction accuracy. Hence, we have proposed a hybrid algorithm through band selection for dimensionality reduction of hyperspectral images. The proposed approach combines mutual information gain (MIG), Minimum Redundancy Maximum Relevance (mRMR) and Error probability of Fano with Support Vector Machine Bands Elimination (SVM-PF). The proposed approach is compared to an effective reproduced filters approach based on mutual information. Experimental results on HSI AVIRIS 92AV3C have shown that the proposed approach outperforms the reproduced filters. Keywords - Hyperspectral images, Classification, band Selection, filter, wrapper, mutual information, information gain.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.