Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

A Systematic Survey of Chemical Pre-trained Models (2210.16484v3)

Published 29 Oct 2022 in cs.LG and cs.AI

Abstract: Deep learning has achieved remarkable success in learning representations for molecules, which is crucial for various biochemical applications, ranging from property prediction to drug design. However, training Deep Neural Networks (DNNs) from scratch often requires abundant labeled molecules, which are expensive to acquire in the real world. To alleviate this issue, tremendous efforts have been devoted to Molecular Pre-trained Models (CPMs), where DNNs are pre-trained using large-scale unlabeled molecular databases and then fine-tuned over specific downstream tasks. Despite the prosperity, there lacks a systematic review of this fast-growing field. In this paper, we present the first survey that summarizes the current progress of CPMs. We first highlight the limitations of training molecular representation models from scratch to motivate CPM studies. Next, we systematically review recent advances on this topic from several key perspectives, including molecular descriptors, encoder architectures, pre-training strategies, and applications. We also highlight the challenges and promising avenues for future research, providing a useful resource for both machine learning and scientific communities.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.