Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SoftBart: Soft Bayesian Additive Regression Trees (2210.16375v1)

Published 28 Oct 2022 in stat.ME, stat.CO, and stat.ML

Abstract: Bayesian additive regression tree (BART) models have seen increased attention in recent years as a general-purpose nonparametric modeling technique. BART combines the flexibility of modern machine learning techniques with the principled uncertainty quantification of Bayesian inference, and it has been shown to be uniquely appropriate for addressing the high-noise problems that occur commonly in many areas of science, including medicine and the social sciences. This paper introduces the SoftBart package for fitting the Soft BART algorithm of Linero and Yang (2018). In addition to improving upon the predictive performance of other BART packages, a major goal of this package has been to facilitate the inclusion of BART in larger models, making it ideal for researchers in Bayesian statistics. I show both how to use this package for standard prediction tasks and how to embed BART models in larger models; I illustrate by using SoftBart to implement a nonparametric probit regression model, a semiparametric varying coefficient model, and a partial linear model.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com