Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parallel Breadth-First Search and Exact Shortest Paths and Stronger Notions for Approximate Distances (2210.16351v1)

Published 28 Oct 2022 in cs.DS and cs.DC

Abstract: We introduce stronger notions for approximate single-source shortest-path distances, show how to efficiently compute them from weaker standard notions, and demonstrate the algorithmic power of these new notions and transformations. One application is the first work-efficient parallel algorithm for computing exact single-source shortest paths graphs -- resolving a major open problem in parallel computing. Given a source vertex in a directed graph with polynomially-bounded nonnegative integer lengths, the algorithm computes an exact shortest path tree in $m \log{O(1)} n$ work and $n{1/2+o(1)}$ depth. Previously, no parallel algorithm improving the trivial linear depths of Dijkstra's algorithm without significantly increasing the work was known, even for the case of undirected and unweighted graphs (i.e., for computing a BFS-tree). Our main result is a black-box transformation that uses $\log{O(1)} n$ standard approximate distance computations to produce approximate distances which also satisfy the subtractive triangle inequality (up to a $(1+\varepsilon)$ factor) and even induce an exact shortest path tree in a graph with only slightly perturbed edge lengths. These strengthened approximations are algorithmically significantly more powerful and overcome well-known and often encountered barriers for using approximate distances. In directed graphs they can even be boosted to exact distances. This results in a black-box transformation of any (parallel or distributed) algorithm for approximate shortest paths in directed graphs into an algorithm computing exact distances at essentially no cost. Applying this to the recent breakthroughs of Fineman et al. for compute approximate SSSP-distances via approximate hopsets gives new parallel and distributed algorithm for exact shortest paths.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.