Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Simultaneous off-the-grid learning of mixtures issued from a continuous dictionary (2210.16311v2)

Published 27 Oct 2022 in stat.ML, cs.LG, math.PR, math.ST, and stat.TH

Abstract: In this paper we observe a set, possibly a continuum, of signals corrupted by noise. Each signal is a finite mixture of an unknown number of features belonging to a continuous dictionary. The continuous dictionary is parametrized by a real non-linear parameter. We shall assume that the signals share an underlying structure by assuming that each signal has its active features included in a finite and sparse set. We formulate regularized optimization problem to estimate simultaneously the linear coefficients in the mixtures and the non-linear parameters of the features. The optimization problem is composed of a data fidelity term and a $(\ell_1,Lp)$-penalty. We call its solution the Group-Nonlinear-Lasso and provide high probability bounds on the prediction error using certificate functions. Following recent works on the geometry of off-the-grid methods, we show that such functions can be constructed provided the parameters of the active features are pairwise separated by a constant with respect to a Riemannian metric.When the number of signals is finite and the noise is assumed Gaussian, we give refinements of our results for $p=1$ and $p=2$ using tail bounds on suprema of Gaussian and $\chi2$ random processes. When $p=2$, our prediction error reaches the rates obtained by the Group-Lasso estimator in the multi-task linear regression model. Furthermore, for $p=2$ these prediction rates are faster than for $p=1$ when all signals share most of the non-linear parameters.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube