Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks (2210.16286v1)

Published 28 Oct 2022 in cs.LG, math.OC, math.PR, and stat.ML

Abstract: To understand the training dynamics of neural networks (NNs), prior studies have considered the infinite-width mean-field (MF) limit of two-layer NN, establishing theoretical guarantees of its convergence under gradient flow training as well as its approximation and generalization capabilities. In this work, we study the infinite-width limit of a type of three-layer NN model whose first layer is random and fixed. To define the limiting model rigorously, we generalize the MF theory of two-layer NNs by treating the neurons as belonging to functional spaces. Then, by writing the MF training dynamics as a kernel gradient flow with a time-varying kernel that remains positive-definite, we prove that its training loss in $L_2$ regression decays to zero at a linear rate. Furthermore, we define function spaces that include the solutions obtainable through the MF training dynamics and prove Rademacher complexity bounds for these spaces. Our theory accommodates different scaling choices of the model, resulting in two regimes of the MF limit that demonstrate distinctive behaviors while both exhibiting feature learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube