Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Turbulent Non-Premixed Combustion on Non-Uniform Meshes and Demonstration of an Accelerated Simulation Workflow (2210.16248v1)

Published 28 Oct 2022 in physics.flu-dyn and cs.LG

Abstract: This paper extends the methodology to use physics-informed enhanced super-resolution generative adversarial networks (PIESRGANs) for LES subfilter modeling in turbulent flows with finite-rate chemistry and shows a successful application to a non-premixed temporal jet case. This is an important topic considering the need for more efficient and carbon-neutral energy devices to fight the climate change. Multiple a priori and a posteriori results are presented and discussed. As part of this, the impact of the underlying mesh on the prediction quality is emphasized, and a multi-mesh approach is developed. It is demonstrated how LES based on PIESRGAN can be employed to predict cases at Reynolds numbers which were not used for training. Finally, the amount of data needed for a successful prediction is elaborated.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)