Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Convergence analysis of a quasi-Monte Carlo-based deep learning algorithm for solving partial differential equations (2210.16196v1)

Published 28 Oct 2022 in math.NA, cs.LG, and cs.NA

Abstract: Deep learning methods have achieved great success in solving partial differential equations (PDEs), where the loss is often defined as an integral. The accuracy and efficiency of these algorithms depend greatly on the quadrature method. We propose to apply quasi-Monte Carlo (QMC) methods to the Deep Ritz Method (DRM) for solving the Neumann problems for the Poisson equation and the static Schr\"{o}dinger equation. For error estimation, we decompose the error of using the deep learning algorithm to solve PDEs into the generalization error, the approximation error and the training error. We establish the upper bounds and prove that QMC-based DRM achieves an asymptotically smaller error bound than DRM. Numerical experiments show that the proposed method converges faster in all cases and the variances of the gradient estimators of randomized QMC-based DRM are much smaller than those of DRM, which illustrates the superiority of QMC in deep learning over MC.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube