Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Analyzing Acoustic Word Embeddings from Pre-trained Self-supervised Speech Models (2210.16043v2)

Published 28 Oct 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Given the strong results of self-supervised models on various tasks, there have been surprisingly few studies exploring self-supervised representations for acoustic word embeddings (AWE), fixed-dimensional vectors representing variable-length spoken word segments. In this work, we study several pre-trained models and pooling methods for constructing AWEs with self-supervised representations. Owing to the contextualized nature of self-supervised representations, we hypothesize that simple pooling methods, such as averaging, might already be useful for constructing AWEs. When evaluating on a standard word discrimination task, we find that HuBERT representations with mean-pooling rival the state of the art on English AWEs. More surprisingly, despite being trained only on English, HuBERT representations evaluated on Xitsonga, Mandarin, and French consistently outperform the multilingual model XLSR-53 (as well as Wav2Vec 2.0 trained on English).

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.