Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Development of a rule-based lemmatization algorithm through Finite State Machine for Uzbek language (2210.16006v1)

Published 28 Oct 2022 in cs.CL

Abstract: Lemmatization is one of the core concepts in natural language processing, thus creating a lemmatization tool is an important task. This paper discusses the construction of a lemmatization algorithm for the Uzbek language. The main purpose of the work is to remove affixes of words in the Uzbek language by means of the finite state machine and to identify a lemma (a word that can be found in the dictionary) of the word. The process of removing affixes uses a database of affixes and part of speech knowledge. This lemmatization consists of the general rules and a part of speech data of the Uzbek language, affixes, classification of affixes, removing affixes on the basis of the finite state machine for each class, as well as a definition of this word lemma.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.