Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectrograms Are Sequences of Patches (2210.15988v1)

Published 28 Oct 2022 in cs.SD, cs.AI, cs.MM, and eess.AS

Abstract: Self-supervised pre-training models have been used successfully in several machine learning domains. However, only a tiny amount of work is related to music. In our work, we treat a spectrogram of music as a series of patches and design a self-supervised model that captures the features of these sequential patches: Patchifier, which makes good use of self-supervised learning methods from both NLP and CV domains. We do not use labeled data for the pre-training process, only a subset of the MTAT dataset containing 16k music clips. After pre-training, we apply the model to several downstream tasks. Our model achieves a considerably acceptable result compared to other audio representation models. Meanwhile, our work demonstrates that it makes sense to consider audio as a series of patch segments.

Summary

We haven't generated a summary for this paper yet.