Spectrograms Are Sequences of Patches (2210.15988v1)
Abstract: Self-supervised pre-training models have been used successfully in several machine learning domains. However, only a tiny amount of work is related to music. In our work, we treat a spectrogram of music as a series of patches and design a self-supervised model that captures the features of these sequential patches: Patchifier, which makes good use of self-supervised learning methods from both NLP and CV domains. We do not use labeled data for the pre-training process, only a subset of the MTAT dataset containing 16k music clips. After pre-training, we apply the model to several downstream tasks. Our model achieves a considerably acceptable result compared to other audio representation models. Meanwhile, our work demonstrates that it makes sense to consider audio as a series of patch segments.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.