Facial Action Unit Detection and Intensity Estimation from Self-supervised Representation (2210.15878v1)
Abstract: As a fine-grained and local expression behavior measurement, facial action unit (FAU) analysis (e.g., detection and intensity estimation) has been documented for its time-consuming, labor-intensive, and error-prone annotation. Thus a long-standing challenge of FAU analysis arises from the data scarcity of manual annotations, limiting the generalization ability of trained models to a large extent. Amounts of previous works have made efforts to alleviate this issue via semi/weakly supervised methods and extra auxiliary information. However, these methods still require domain knowledge and have not yet avoided the high dependency on data annotation. This paper introduces a robust facial representation model MAE-Face for AU analysis. Using masked autoencoding as the self-supervised pre-training approach, MAE-Face first learns a high-capacity model from a feasible collection of face images without additional data annotations. Then after being fine-tuned on AU datasets, MAE-Face exhibits convincing performance for both AU detection and AU intensity estimation, achieving a new state-of-the-art on nearly all the evaluation results. Further investigation shows that MAE-Face achieves decent performance even when fine-tuned on only 1\% of the AU training set, strongly proving its robustness and generalization performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.