Papers
Topics
Authors
Recent
2000 character limit reached

GraphMAD: Graph Mixup for Data Augmentation using Data-Driven Convex Clustering (2210.15721v1)

Published 27 Oct 2022 in cs.LG and cs.AI

Abstract: We develop a novel data-driven nonlinear mixup mechanism for graph data augmentation and present different mixup functions for sample pairs and their labels. Mixup is a data augmentation method to create new training data by linearly interpolating between pairs of data samples and their labels. Mixup of graph data is challenging since the interpolation between graphs of potentially different sizes is an ill-posed operation. Hence, a promising approach for graph mixup is to first project the graphs onto a common latent feature space and then explore linear and nonlinear mixup strategies in this latent space. In this context, we propose to (i) project graphs onto the latent space of continuous random graph models known as graphons, (ii) leverage convex clustering in this latent space to generate nonlinear data-driven mixup functions, and (iii) investigate the use of different mixup functions for labels and data samples. We evaluate our graph data augmentation performance on benchmark datasets and demonstrate that nonlinear data-driven mixup functions can significantly improve graph classification.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.