Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An arbitrary-order discrete rot-rot complex on polygonal meshes with application to a quad-rot problem (2210.15581v1)

Published 27 Oct 2022 in math.NA and cs.NA

Abstract: In this work, following the discrete de Rham (DDR) approach, we develop a discrete counterpart of a two-dimensional de Rham complex with enhanced regularity. The proposed construction supports general polygonal meshes and arbitrary approximation orders. We establish exactness on a contractible domain for both the versions of the complex with and without boundary conditions and, for the former, prove a complete set of Poincar\'e-type inequalities. The discrete complex is then used to derive a novel discretisation method for a quad-rot problem which, unlike other schemes in the literature, does not require the forcing term to be prepared. We carry out complete stability and convergence analyses for the proposed scheme and provide numerical validation of the results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Daniele A. Di Pietro (41 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.