Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Accurate Bundle Matching and Generation via Multitask Learning with Partially Shared Parameters (2210.15460v2)

Published 19 Oct 2022 in cs.IR, cs.AI, and cs.LG

Abstract: How can we recommend existing bundles to users accurately? How can we generate new tailored bundles for users? Recommending a bundle, or a group of various items, has attracted widespread attention in e-commerce owing to the increased satisfaction of both users and providers. Bundle matching and bundle generation are two representative tasks in bundle recommendation. The bundle matching task is to correctly match existing bundles to users while the bundle generation is to generate new bundles that users would prefer. Although many recent works have developed bundle recommendation models, they fail to achieve high accuracy since they do not handle heterogeneous data effectively and do not learn a method for customized bundle generation. In this paper, we propose BundleMage, an accurate approach for bundle matching and generation. BundleMage effectively mixes user preferences of items and bundles using an adaptive gate technique to achieve high accuracy for the bundle matching. BundleMage also generates a personalized bundle by learning a generation module that exploits a user preference and the characteristic of a given incomplete bundle to be completed. BundleMage further improves its performance using multi-task learning with partially shared parameters. Through extensive experiments, we show that BundleMage achieves up to 6.6% higher nDCG in bundle matching and 6.3x higher nDCG in bundle generation than the best competitors. We also provide qualitative analysis that BundleMage effectively generates bundles considering both the tastes of users and the characteristics of target bundles.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube