Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

One-Class Risk Estimation for One-Class Hyperspectral Image Classification (2210.15457v2)

Published 27 Oct 2022 in cs.CV

Abstract: Hyperspectral imagery (HSI) one-class classification is aimed at identifying a single target class from the HSI by using only knowing positive data, which can significantly reduce the requirements for annotation. However, when one-class classification meets HSI, it is difficult for classifiers to find a balance between the overfitting and underfitting of positive data due to the problems of distribution overlap and distribution imbalance. Although deep learning-based methods are currently the mainstream to overcome distribution overlap in HSI multiclassification, few studies focus on deep learning-based HSI one-class classification. In this article, a weakly supervised deep HSI one-class classifier, namely, HOneCls, is proposed, where a risk estimator,the one-class risk estimator, is particularly introduced to make the fully convolutional neural network (FCN) with the ability of one class classification in the case of distribution imbalance. Extensive experiments (20 tasks in total) were conducted to demonstrate the superiority of the proposed classifier.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.