Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Querying Incomplete Numerical Data: Between Certain and Possible Answers (2210.15395v2)

Published 27 Oct 2022 in cs.DB

Abstract: Queries with aggregation and arithmetic operations, as well as incomplete data, are common in real-world database, but we lack a good understanding of how they should interact. On the one hand, systems based on SQL provide ad-hoc rules for numerical nulls, on the other, theoretical research largely concentrates on the standard notions of certain and possible answers. In the presence of numerical attributes and aggregates, however, these answers are often meaningless, returning either too little or too much. Our goal is to define a principled framework for databases with numerical nulls and answering queries with arithmetic and aggregations over them. Towards this goal, we assume that missing values in numerical attributes are given by probability distributions associated with marked nulls. This yields a model of probabilistic bag databases in which tuples are not necessarily independent, since nulls can repeat. We provide a general compositional framework for query answering, and then concentrate on queries that resemble standard SQL with arithmetic and aggregation. We show that these queries are measurable, and that their outputs have a finite representation. Moreover, since the classical forms of answers provide little information in the numerical setting, we look at the probability that numerical values in output tuples belong to specific intervals. Even though their exact computation is intractable, we show efficient approximation algorithms to compute such probabilities.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.