Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Leveraging knowledge graphs to update scientific word embeddings using latent semantic imputation (2210.15358v1)

Published 27 Oct 2022 in cs.CL

Abstract: The most interesting words in scientific texts will often be novel or rare. This presents a challenge for scientific word embedding models to determine quality embedding vectors for useful terms that are infrequent or newly emerging. We demonstrate how \gls{lsi} can address this problem by imputing embeddings for domain-specific words from up-to-date knowledge graphs while otherwise preserving the original word embedding model. We use the MeSH knowledge graph to impute embedding vectors for biomedical terminology without retraining and evaluate the resulting embedding model on a domain-specific word-pair similarity task. We show that LSI can produce reliable embedding vectors for rare and OOV terms in the biomedical domain.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube