Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Music Representations with wav2vec 2.0 (2210.15310v1)

Published 27 Oct 2022 in eess.AS and cs.SD

Abstract: Learning music representations that are general-purpose offers the flexibility to finetune several downstream tasks using smaller datasets. The wav2vec 2.0 speech representation model showed promising results in many downstream speech tasks, but has been less effective when adapted to music. In this paper, we evaluate whether pre-training wav2vec 2.0 directly on music data can be a better solution instead of finetuning the speech model. We illustrate that when pre-training on music data, the discrete latent representations are able to encode the semantic meaning of musical concepts such as pitch and instrument. Our results show that finetuning wav2vec 2.0 pre-trained on music data allows us to achieve promising results on music classification tasks that are competitive with prior work on audio representations. In addition, the results are superior to the pre-trained model on speech embeddings, demonstrating that wav2vec 2.0 pre-trained on music data can be a promising music representation model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Alessandro Ragano (14 papers)
  2. Emmanouil Benetos (89 papers)
  3. Andrew Hines (27 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.