Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Music Representations with wav2vec 2.0 (2210.15310v1)

Published 27 Oct 2022 in eess.AS and cs.SD

Abstract: Learning music representations that are general-purpose offers the flexibility to finetune several downstream tasks using smaller datasets. The wav2vec 2.0 speech representation model showed promising results in many downstream speech tasks, but has been less effective when adapted to music. In this paper, we evaluate whether pre-training wav2vec 2.0 directly on music data can be a better solution instead of finetuning the speech model. We illustrate that when pre-training on music data, the discrete latent representations are able to encode the semantic meaning of musical concepts such as pitch and instrument. Our results show that finetuning wav2vec 2.0 pre-trained on music data allows us to achieve promising results on music classification tasks that are competitive with prior work on audio representations. In addition, the results are superior to the pre-trained model on speech embeddings, demonstrating that wav2vec 2.0 pre-trained on music data can be a promising music representation model.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube