Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Leveraging Computer Vision Application in Visual Arts: A Case Study on the Use of Residual Neural Network to Classify and Analyze Baroque Paintings (2210.15300v1)

Published 27 Oct 2022 in cs.MM and cs.CV

Abstract: With the increasing availability of large digitized fine art collections, automated analysis and classification of paintings is becoming an interesting area of research. However, due to domain specificity, implicit subjectivity, and pervasive nuances that vaguely separate art movements, analyzing art using machine learning techniques poses significant challenges. Residual networks, or variants thereof, are one the most popular tools for image classification tasks, which can extract relevant features for well-defined classes. In this case study, we focus on the classification of a selected painting 'Portrait of the Painter Charles Bruni' by Johann Kupetzky and the analysis of the performance of the proposed classifier. We show that the features extracted during residual network training can be useful for image retrieval within search systems in online art collections.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)