Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Isometric 3D Adversarial Examples in the Physical World (2210.15291v1)

Published 27 Oct 2022 in cs.CV, cs.AI, cs.CR, cs.LG, and stat.ML

Abstract: 3D deep learning models are shown to be as vulnerable to adversarial examples as 2D models. However, existing attack methods are still far from stealthy and suffer from severe performance degradation in the physical world. Although 3D data is highly structured, it is difficult to bound the perturbations with simple metrics in the Euclidean space. In this paper, we propose a novel $\epsilon$-isometric ($\epsilon$-ISO) attack to generate natural and robust 3D adversarial examples in the physical world by considering the geometric properties of 3D objects and the invariance to physical transformations. For naturalness, we constrain the adversarial example to be $\epsilon$-isometric to the original one by adopting the Gaussian curvature as a surrogate metric guaranteed by a theoretical analysis. For invariance to physical transformations, we propose a maxima over transformation (MaxOT) method that actively searches for the most harmful transformations rather than random ones to make the generated adversarial example more robust in the physical world. Experiments on typical point cloud recognition models validate that our approach can significantly improve the attack success rate and naturalness of the generated 3D adversarial examples than the state-of-the-art attack methods.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.