Papers
Topics
Authors
Recent
2000 character limit reached

Monte Carlo method for parabolic equations involving fractional Laplacian (2210.15192v1)

Published 27 Oct 2022 in math.NA and cs.NA

Abstract: We apply the Monte Carlo method to solving the Dirichlet problem of linear parabolic equations with fractional Laplacian. This method exploit- s the idea of weak approximation of related stochastic differential equations driven by the symmetric stable L\'evy process with jumps. We utilize the jump- adapted scheme to approximate L\'evy process which gives exact exit time to the boundary. When the solution has low regularity, we establish a numeri- cal scheme by removing the small jumps of the L\'evy process and then show the convergence order. When the solution has higher regularity, we build up a higher-order numerical scheme by replacing small jumps with a simple process and then display the higher convergence order. Finally, numerical experiments including ten- and one hundred-dimensional cases are presented, which confirm the theoretical estimates and show the numerical efficiency of the proposed schemes for high dimensional parabolic equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.