Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Secure IP Address Allocation at Cloud Scale (2210.14999v2)

Published 26 Oct 2022 in cs.CR

Abstract: Public clouds necessitate dynamic resource allocation and sharing. However, the dynamic allocation of IP addresses can be abused by adversaries to source malicious traffic, bypass rate limiting systems, and even capture traffic intended for other cloud tenants. As a result, both the cloud provider and their customers are put at risk, and defending against these threats requires a rigorous analysis of tenant behavior, adversarial strategies, and cloud provider policies. In this paper, we develop a practical defense for IP address allocation through such an analysis. We first develop a statistical model of cloud tenant deployment behavior based on literature and measurement of deployed systems. Through this, we analyze IP allocation policies under existing and novel threat models. In response to our stronger proposed threat model, we design IP scan segmentation, an IP allocation policy that protects the address pool against adversarial scanning even when an adversary is not limited by number of cloud tenants. Through empirical evaluation on both synthetic and real-world allocation traces, we show that IP scan segmentation reduces adversaries' ability to rapidly allocate addresses, protecting both address space reputation and cloud tenant data. In this way, we show that principled analysis and implementation of cloud IP address allocation can lead to substantial security gains for tenants and their users.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.