Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Intelligent Decision Support Ensemble Voting Model for Coronary Artery Disease Prediction in Smart Healthcare Monitoring Environments (2210.14906v1)

Published 25 Oct 2022 in cs.LG and cs.AI

Abstract: Coronary artery disease (CAD) is one of the most common cardiac diseases worldwide and causes disability and economic burden. It is the world's leading and most serious cause of mortality, with approximately 80% of deaths reported in low- and middle-income countries. The preferred and most precise diagnostic tool for CAD is angiography, but it is invasive, expensive, and technically demanding. However, the research community is increasingly interested in the computer-aided diagnosis of CAD via the utilization of ML methods. The purpose of this work is to present an e-diagnosis tool based on ML algorithms that can be used in a smart healthcare monitoring system. We applied the most accurate machine learning methods that have shown superior results in the literature to different medical datasets such as RandomForest, XGboost, MLP, J48, AdaBoost, NaiveBayes, LogitBoost, KNN. Every single classifier can be efficient on a different dataset. Thus, an ensemble model using majority voting was designed to take advantage of the well-performed single classifiers, Ensemble learning aims to combine the forecasts of multiple individual classifiers to achieve higher performance than individual classifiers in terms of precision, specificity, sensitivity, and accuracy; furthermore, we have benchmarked our proposed model with the most efficient and well-known ensemble models, such as Bagging, Stacking methods based on the cross-validation technique, The experimental results confirm that the ensemble majority voting approach based on the top 3 classifiers: MultilayerPerceptron, RandomForest, and AdaBoost, achieves the highest accuracy of 88,12% and outperforms all other classifiers. This study demonstrates that the majority voting ensemble approach proposed above is the most accurate machine learning classification approach for the prediction and detection of coronary artery disease.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.