Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hybrid HMM Decoder For Convolutional Codes By Joint Trellis-Like Structure and Channel Prior (2210.14749v2)

Published 26 Oct 2022 in cs.IT, cs.LG, cs.NI, and math.IT

Abstract: The anti-interference capability of wireless links is a physical layer problem for edge computing. Although convolutional codes have inherent error correction potential due to the redundancy introduced in the data, the performance of the convolutional code is drastically degraded due to multipath effects on the channel. In this paper, we propose the use of a Hidden Markov Model (HMM) for the reconstruction of convolutional codes and decoding by the Viterbi algorithm. Furthermore, to implement soft-decision decoding, the observation of HMM is replaced by Gaussian mixture models (GMM). Our method provides superior error correction potential than the standard method because the model parameters contain channel state information (CSI). We evaluated the performance of the method compared to standard Viterbi decoding by numerical simulation. In the multipath channel, the hybrid HMM decoder can achieve a performance gain of 4.7 dB and 2 dB when using hard-decision and soft-decision decoding, respectively. The HMM decoder also achieves significant performance gains for the RSC code, suggesting that the method could be extended to turbo codes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.