Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Long-tailed Food Classification (2210.14748v1)

Published 26 Oct 2022 in cs.CV

Abstract: Food classification serves as the basic step of image-based dietary assessment to predict the types of foods in each input image. However, food image predictions in a real world scenario are usually long-tail distributed among different food classes, which cause heavy class-imbalance problems and a restricted performance. In addition, none of the existing long-tailed classification methods focus on food data, which can be more challenging due to the lower inter-class and higher intra-class similarity among foods. In this work, we first introduce two new benchmark datasets for long-tailed food classification including Food101-LT and VFN-LT where the number of samples in VFN-LT exhibits the real world long-tailed food distribution. Then we propose a novel 2-Phase framework to address the problem of class-imbalance by (1) undersampling the head classes to remove redundant samples along with maintaining the learned information through knowledge distillation, and (2) oversampling the tail classes by performing visual-aware data augmentation. We show the effectiveness of our method by comparing with existing state-of-the-art long-tailed classification methods and show improved performance on both Food101-LT and VFN-LT benchmarks. The results demonstrate the potential to apply our method to related real life applications.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.