Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Objective Hardware-Mapping Co-Optimisation for Multi-DNN Workloads on Chiplet-based Accelerators (2210.14657v2)

Published 26 Oct 2022 in cs.AR

Abstract: The need to efficiently execute different Deep Neural Networks (DNNs) on the same computing platform, coupled with the requirement for easy scalability, makes Multi-Chip Module (MCM)-based accelerators a preferred design choice. Such an accelerator brings together heterogeneous sub-accelerators in the form of chiplets, interconnected by a Network-on-Package (NoP). This paper addresses the challenge of selecting the most suitable sub-accelerators, configuring them, determining their optimal placement in the NoP, and mapping the layers of a predetermined set of DNNs spatially and temporally. The objective is to minimise execution time and energy consumption during parallel execution while also minimising the overall cost, specifically the silicon area, of the accelerator. This paper presents MOHaM, a framework for multi-objective hardware-mapping co-optimisation for multi-DNN workloads on chiplet-based accelerators. MOHaM exploits a multi-objective evolutionary algorithm that has been specialised for the given problem by incorporating several customised genetic operators. MOHaM is evaluated against state-of-the-art Design Space Exploration (DSE) frameworks on different multi-DNN workload scenarios. The solutions discovered by MOHaM are Pareto optimal compared to those by the state-of-the-art. Specifically, MOHaM-generated accelerator designs can reduce latency by up to $96\%$ and energy by up to $96.12\%$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.