Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Provable Sample-Efficient Sparse Phase Retrieval Initialized by Truncated Power Method (2210.14628v2)

Published 26 Oct 2022 in cs.IT and math.IT

Abstract: We study the sparse phase retrieval problem, recovering an $s$-sparse length-$n$ signal from $m$ magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies for this problem. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearly when appropriately initialized. However, in terms of sample complexity, the bottleneck of those algorithms often comes from the initialization stage. Although the refinement stage usually needs only $m=\Omega(s\log n)$ measurements, the widely used spectral initialization in the initialization stage requires $m=\Omega(s2\log n)$ measurements to produce a desired initial guess, which causes the total sample complexity order-wisely more than necessary. To reduce the number of measurements, we propose a truncated power method to replace the spectral initialization for non-convex sparse phase retrieval algorithms. We prove that $m=\Omega(\bar{s} s\log n)$ measurements, where $\bar{s}$ is the stable sparsity of the underlying signal, are sufficient to produce a desired initial guess. When the underlying signal contains only very few significant components, the sample complexity of the proposed algorithm is $m=\Omega(s\log n)$ and optimal. Numerical experiments illustrate that the proposed method is more sample-efficient than state-of-the-art algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube