Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automatic Diagnosis of Myocarditis Disease in Cardiac MRI Modality using Deep Transformers and Explainable Artificial Intelligence (2210.14611v2)

Published 26 Oct 2022 in cs.CV and cs.LG

Abstract: Myocarditis is a significant cardiovascular disease (CVD) that poses a threat to the health of many individuals by causing damage to the myocardium. The occurrence of microbes and viruses, including the likes of HIV, plays a crucial role in the development of myocarditis disease (MCD). The images produced during cardiac magnetic resonance imaging (CMRI) scans are low contrast, which can make it challenging to diagnose cardiovascular diseases. In other hand, checking numerous CMRI slices for each CVD patient can be a challenging task for medical doctors. To overcome the existing challenges, researchers have suggested the use of AI-based computer-aided diagnosis systems (CADS). The presented paper outlines a CADS for the detection of MCD from CMR images, utilizing deep learning (DL) methods. The proposed CADS consists of several steps, including dataset, preprocessing, feature extraction, classification, and post-processing. First, the Z-Alizadeh dataset was selected for the experiments. Subsequently, the CMR images underwent various preprocessing steps, including denoising, resizing, as well as data augmentation (DA) via CutMix and MixUp techniques. In the following, the most current deep pre-trained and transformer models are used for feature extraction and classification on the CMR images. The findings of our study reveal that transformer models exhibit superior performance in detecting MCD as opposed to pre-trained architectures. In terms of DL architectures, the Turbulence Neural Transformer (TNT) model exhibited impressive accuracy, reaching 99.73% utilizing a 10-fold cross-validation approach. Additionally, to pinpoint areas of suspicion for MCD in CMRI images, the Explainable-based Grad Cam method was employed.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.