Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A novel filter based on three variables mutual information for dimensionality reduction and classification of hyperspectral images (2210.14609v1)

Published 26 Oct 2022 in cs.CV

Abstract: The high dimensionality of hyperspectral images (HSI) that contains more than hundred bands (images) for the same region called Ground Truth Map, often imposes a heavy computational burden for image processing and complicates the learning process. In fact, the removal of irrelevant, noisy and redundant bands helps increase the classification accuracy. Band selection filter based on "Mutual Information" is a common technique for dimensionality reduction. In this paper, a categorization of dimensionality reduction methods according to the evaluation process is presented. Moreover, a new filter approach based on three variables mutual information is developed in order to measure band correlation for classification, it considers not only bands relevance but also bands interaction. The proposed approach is compared to a reproduced filter algorithm based on mutual information. Experimental results on HSI AVIRIS 92AV3C have shown that the proposed approach is very competitive, effective and outperforms the reproduced filter strategy performance. Keywords - Hyperspectral images, Classification, band Selection, Three variables Mutual Information, information gain.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.