Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

End-to-end Tracking with a Multi-query Transformer (2210.14601v1)

Published 26 Oct 2022 in cs.CV

Abstract: Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time. Our aim in this paper is to move beyond tracking-by-detection approaches, that perform well on datasets where the object classes are known, to class-agnostic tracking that performs well also for unknown object classes.To this end, we make the following three contributions: first, we introduce {\em semantic detector queries} that enable an object to be localized by specifying its approximate position, or its appearance, or both; second, we use these queries within an auto-regressive framework for tracking, and propose a multi-query tracking transformer (\textit{MQT}) model for simultaneous tracking and appearance-based re-identification (reID) based on the transformer architecture with deformable attention. This formulation allows the tracker to operate in a class-agnostic manner, and the model can be trained end-to-end; finally, we demonstrate that \textit{MQT} performs competitively on standard MOT benchmarks, outperforms all baselines on generalised-MOT, and generalises well to a much harder tracking problems such as tracking any object on the TAO dataset.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.