Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Eeny, meeny, miny, moe. How to choose data for morphological inflection (2210.14465v1)

Published 26 Oct 2022 in cs.CL

Abstract: Data scarcity is a widespread problem in numerous NLP tasks for low-resource languages. Within morphology, the labour-intensive work of tagging/glossing data is a serious bottleneck for both NLP and language documentation. Active learning (AL) aims to reduce the cost of data annotation by selecting data that is most informative for improving the model. In this paper, we explore four sampling strategies for the task of morphological inflection using a Transformer model: a pair of oracle experiments where data is chosen based on whether the model already can or cannot inflect the test forms correctly, as well as strategies based on high/low model confidence, entropy, as well as random selection. We investigate the robustness of each strategy across 30 typologically diverse languages. We also perform a more in-depth case study of Nat\"ugu. Our results show a clear benefit to selecting data based on model confidence and entropy. Unsurprisingly, the oracle experiment, where only incorrectly handled forms are chosen for further training, which is presented as a proxy for linguist/language consultant feedback, shows the most improvement. This is followed closely by choosing low-confidence and high-entropy predictions. We also show that despite the conventional wisdom of larger data sets yielding better accuracy, introducing more instances of high-confidence or low-entropy forms, or forms that the model can already inflect correctly, can reduce model performance.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.