Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smart cloud collocation: geometry-aware adaptivity directly from CAD (2210.14327v1)

Published 25 Oct 2022 in math.NA and cs.NA

Abstract: Computer Aided Design (CAD) is widely used in the creation and optimization of various industrial systems and processes. Transforming a CAD geometry into a computational discretization that be used to solve PDEs requires care and a deep knowledge of the selected computational method. In this article, we present a novel integrated collocation scheme based on smart clouds. It allows us to transform a CAD geometry into a complete point collocation model, aware of the base geometry, with minimum effort. For this process, only the geometry of the domain, in the form of a STEP file, and the boundary conditions are needed. We also introduce an adaptive refinement process for the resultant smart cloud using an \textit{a posteriori} error indication. The scheme can be applied to any 2D or 3D geometry, to any PDE and can be applied to most point collocation approaches. We illustrate this with the meshfree Generalized Finite Difference (GFD) method applied to steady linear elasticity problems. We further show that each step of this process, from the initial discretization to the refinement strategy, is connected and is affected by the approach selected in the previous step, thus requiring an integrated scheme where the whole solution process should be considered at once.

Citations (8)

Summary

We haven't generated a summary for this paper yet.