Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning to Augment via Implicit Differentiation for Domain Generalization (2210.14271v1)

Published 25 Oct 2022 in cs.CV

Abstract: Machine learning models are intrinsically vulnerable to domain shift between training and testing data, resulting in poor performance in novel domains. Domain generalization (DG) aims to overcome the problem by leveraging multiple source domains to learn a domain-generalizable model. In this paper, we propose a novel augmentation-based DG approach, dubbed AugLearn. Different from existing data augmentation methods, our AugLearn views a data augmentation module as hyper-parameters of a classification model and optimizes the module together with the model via meta-learning. Specifically, at each training step, AugLearn (i) divides source domains into a pseudo source and a pseudo target set, and (ii) trains the augmentation module in such a way that the augmented (synthetic) images can make the model generalize well on the pseudo target set. Moreover, to overcome the expensive second-order gradient computation during meta-learning, we formulate an efficient joint training algorithm, for both the augmentation module and the classification model, based on the implicit function theorem. With the flexibility of augmenting data in both time and frequency spaces, AugLearn shows effectiveness on three standard DG benchmarks, PACS, Office-Home and Digits-DG.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.