Papers
Topics
Authors
Recent
2000 character limit reached

Motion correction in MRI using deep learning and a novel hybrid loss function (2210.14156v1)

Published 19 Oct 2022 in eess.IV and cs.CV

Abstract: Purpose To develop and evaluate a deep learning-based method (MC-Net) to suppress motion artifacts in brain magnetic resonance imaging (MRI). Methods MC-Net was derived from a UNet combined with a two-stage multi-loss function. T1-weighted axial brain images contaminated with synthetic motions were used to train the network. Evaluation used simulated T1 and T2-weighted axial, coronal, and sagittal images unseen during training, as well as T1-weighted images with motion artifacts from real scans. Performance indices included the peak signal to noise ratio (PSNR), structural similarity index measure (SSIM), and visual reading scores. Two clinical readers scored the images. Results The MC-Net outperformed other methods implemented in terms of PSNR and SSIM on the T1 axial test set. The MC-Net significantly improved the quality of all T1-weighted images (for all directions and for simulated as well as real motion artifacts), both on quantitative measures and visual scores. However, the MC-Net performed poorly on images of untrained contrast (T2-weighted). Conclusion The proposed two-stage multi-loss MC-Net can effectively suppress motion artifacts in brain MRI without compromising image context. Given the efficiency of the MC-Net (single image processing time ~40ms), it can potentially be used in real clinical settings. To facilitate further research, the code and trained model are available at https://github.com/MRIMoCo/DL_Motion_Correction.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com