Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Meta-learning Pathologies from Radiology Reports using Variance Aware Prototypical Networks (2210.13979v2)

Published 22 Oct 2022 in cs.LG and cs.CL

Abstract: Large pretrained Transformer-based LLMs like BERT and GPT have changed the landscape of NLP. However, fine tuning such models still requires a large number of training examples for each target task, thus annotating multiple datasets and training these models on various downstream tasks becomes time consuming and expensive. In this work, we propose a simple extension of the Prototypical Networks for few-shot text classification. Our main idea is to replace the class prototypes by Gaussians and introduce a regularization term that encourages the examples to be clustered near the appropriate class centroids. Experimental results show that our method outperforms various strong baselines on 13 public and 4 internal datasets. Furthermore, we use the class distributions as a tool for detecting potential out-of-distribution (OOD) data points during deployment.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.