Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Preference-Learning Emitters for Mixed-Initiative Quality-Diversity Algorithms (2210.13839v2)

Published 25 Oct 2022 in cs.NE and cs.HC

Abstract: In mixed-initiative co-creation tasks, wherein a human and a machine jointly create items, it is important to provide multiple relevant suggestions to the designer. Quality-diversity algorithms are commonly used for this purpose, as they can provide diverse suggestions that represent salient areas of the solution space, showcasing designs with high fitness and wide variety. Because generated suggestions drive the search process, it is important that they provide inspiration, but also stay aligned with the designer's intentions. Additionally, often many interactions with the system are required before the designer is content with a solution. In this work, we tackle these challenges with an interactive constrained MAP-Elites system that leverages emitters to learn the preferences of the designer and then use them in automated steps. By learning preferences, the generated designs remain aligned with the designer's intent, and by applying automatic steps, we generate more solutions per user interaction, giving a larger number of choices to the designer and thereby speeding up the search. We propose a general framework for preference-learning emitters (PLEs) and apply it to a procedural content generation task in the video game Space Engineers. We built an interactive application for our algorithm and performed a user study with players.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube