Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Boosting Robustness of DNN-based Image Watermarking via DBMark (2210.13801v3)

Published 25 Oct 2022 in cs.CV and cs.CR

Abstract: Image watermarking is a technique for hiding information into images that can withstand distortions while requiring the encoded image to be perceptually identical to the original image. Recent work based on deep neural networks (DNN) has achieved impressive progression in digital watermarking. Higher robustness under various distortions is the eternal pursuit of digital image watermarking approaches. In this paper, we propose DBMARK, a novel end-to-end digital image watermarking framework to deep boost the robustness of DNN-based image watermarking. The key novelty is the synergy of invertible neural networks (INN) and effective watermark features generation. The framework generates watermark features with redundancy and error correction ability through the effective neural network based message processor, synergized with the powerful information embedding and extraction abilities of INN to achieve higher robustness and invisibility. The powerful learning ability of neural networks enables the message processor to adapt to various distortions. In addition, we propose to embed the watermark information in the discrete wavelet transform (DWT) domain and design low-low (LL) sub-band loss to enhance invisibility. Extensive experiment results demonstrate the superiority of the proposed framework compared with the state-of-the-art ones under various distortions such as dropout, cropout, crop, Gaussian filter, and JPEG compression.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.