Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Facial Action Units Detection Aided by Global-Local Expression Embedding (2210.13718v1)

Published 25 Oct 2022 in cs.CV and cs.AI

Abstract: Since Facial Action Unit (AU) annotations require domain expertise, common AU datasets only contain a limited number of subjects. As a result, a crucial challenge for AU detection is addressing identity overfitting. We find that AUs and facial expressions are highly associated, and existing facial expression datasets often contain a large number of identities. In this paper, we aim to utilize the expression datasets without AU labels to facilitate AU detection. Specifically, we develop a novel AU detection framework aided by the Global-Local facial Expressions Embedding, dubbed GLEE-Net. Our GLEE-Net consists of three branches to extract identity-independent expression features for AU detection. We introduce a global branch for modeling the overall facial expression while eliminating the impacts of identities. We also design a local branch focusing on specific local face regions. The combined output of global and local branches is firstly pre-trained on an expression dataset as an identity-independent expression embedding, and then finetuned on AU datasets. Therefore, we significantly alleviate the issue of limited identities. Furthermore, we introduce a 3D global branch that extracts expression coefficients through 3D face reconstruction to consolidate 2D AU descriptions. Finally, a Transformer-based multi-label classifier is employed to fuse all the representations for AU detection. Extensive experiments demonstrate that our method significantly outperforms the state-of-the-art on the widely-used DISFA, BP4D and BP4D+ datasets.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube