Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

FedGRec: Federated Graph Recommender System with Lazy Update of Latent Embeddings (2210.13686v1)

Published 25 Oct 2022 in cs.LG

Abstract: Recommender systems are widely used in industry to improve user experience. Despite great success, they have recently been criticized for collecting private user data. Federated Learning (FL) is a new paradigm for learning on distributed data without direct data sharing. Therefore, Federated Recommender (FedRec) systems are proposed to mitigate privacy concerns to non-distributed recommender systems. However, FedRec systems have a performance gap to its non-distributed counterpart. The main reason is that local clients have an incomplete user-item interaction graph, thus FedRec systems cannot utilize indirect user-item interactions well. In this paper, we propose the Federated Graph Recommender System (FedGRec) to mitigate this gap. Our FedGRec system can effectively exploit the indirect user-item interactions. More precisely, in our system, users and the server explicitly store latent embeddings for users and items, where the latent embeddings summarize different orders of indirect user-item interactions and are used as a proxy of missing interaction graph during local training. We perform extensive empirical evaluations to verify the efficacy of using latent embeddings as a proxy of missing interaction graph; the experimental results show superior performance of our system compared to various baselines. A short version of the paper is presented in \href{https://federated-learning.org/fl-neurips-2022/}{the FL-NeurIPS'22 workshop}.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)