Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Strong-TransCenter: Improved Multi-Object Tracking based on Transformers with Dense Representations (2210.13570v2)

Published 24 Oct 2022 in cs.CV

Abstract: Transformer networks have been a focus of research in many fields in recent years, being able to surpass the state-of-the-art performance in different computer vision tasks. However, in the task of Multiple Object Tracking (MOT), leveraging the power of Transformers remains relatively unexplored. Among the pioneering efforts in this domain, TransCenter, a Transformer-based MOT architecture with dense object queries, demonstrated exceptional tracking capabilities while maintaining reasonable runtime. Nonetheless, one critical aspect in MOT, track displacement estimation, presents room for enhancement to further reduce association errors. In response to this challenge, our paper introduces a novel improvement to TransCenter. We propose a post-processing mechanism grounded in the Track-by-Detection paradigm, aiming to refine the track displacement estimation. Our approach involves the integration of a carefully designed Kalman filter, which incorporates Transformer outputs into measurement error estimation, and the use of an embedding network for target re-identification. This combined strategy yields substantial improvement in the accuracy and robustness of the tracking process. We validate our contributions through comprehensive experiments on the MOTChallenge datasets MOT17 and MOT20, where our proposed approach outperforms other Transformer-based trackers. The code is publicly available at: https://github.com/amitgalor18/STC_Tracker

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.