Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Private Online Prediction from Experts: Separations and Faster Rates (2210.13537v3)

Published 24 Oct 2022 in cs.LG, cs.CR, math.OC, and stat.ML

Abstract: Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints. We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries. For approximate differential privacy, our algorithms achieve regret bounds of $\tilde{O}(\sqrt{T \log d} + \log d/\varepsilon)$ for the stochastic setting and $\tilde{O}(\sqrt{T \log d} + T{1/3} \log d/\varepsilon)$ for oblivious adversaries (where $d$ is the number of experts). For pure DP, our algorithms are the first to obtain sub-linear regret for oblivious adversaries in the high-dimensional regime $d \ge T$. Moreover, we prove new lower bounds for adaptive adversaries. Our results imply that unlike the non-private setting, there is a strong separation between the optimal regret for adaptive and non-adaptive adversaries for this problem. Our lower bounds also show a separation between pure and approximate differential privacy for adaptive adversaries where the latter is necessary to achieve the non-private $O(\sqrt{T})$ regret.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.