Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Top-K in SGD for Communication-Efficient Distributed Learning (2210.13532v2)

Published 24 Oct 2022 in cs.LG, cs.DC, and math.OC

Abstract: Distributed stochastic gradient descent (SGD) with gradient compression has become a popular communication-efficient solution for accelerating distributed learning. One commonly used method for gradient compression is Top-K sparsification, which sparsifies the gradients by a fixed degree during model training. However, there has been a lack of an adaptive approach to adjust the sparsification degree to maximize the potential of the model's performance or training speed. This paper proposes a novel adaptive Top-K in SGD framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance by balancing the trade-off between communication cost and convergence error. Firstly, an upper bound of convergence error is derived for the adaptive sparsification scheme and the loss function. Secondly, an algorithm is designed to minimize the convergence error under the communication cost constraints. Finally, numerical results on the MNIST and CIFAR-10 datasets demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods, even after considering error compensation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.