Papers
Topics
Authors
Recent
2000 character limit reached

Layer-Neighbor Sampling -- Defusing Neighborhood Explosion in GNNs (2210.13339v2)

Published 24 Oct 2022 in cs.LG

Abstract: Graph Neural Networks (GNNs) have received significant attention recently, but training them at a large scale remains a challenge. Mini-batch training coupled with sampling is used to alleviate this challenge. However, existing approaches either suffer from the neighborhood explosion phenomenon or have poor performance. To address these issues, we propose a new sampling algorithm called LAyer-neighBOR sampling (LABOR). It is designed to be a direct replacement for Neighbor Sampling (NS) with the same fanout hyperparameter while sampling up to 7 times fewer vertices, without sacrificing quality. By design, the variance of the estimator of each vertex matches NS from the point of view of a single vertex. Moreover, under the same vertex sampling budget constraints, LABOR converges faster than existing layer sampling approaches and can use up to 112 times larger batch sizes compared to NS.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.