Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Multi-Hypothesis Testing with Moment Constrained Uncertainty Sets (2210.12869v3)

Published 23 Oct 2022 in math.ST, cs.IT, math.IT, and stat.TH

Abstract: The problem of robust binary hypothesis testing is studied. Under both hypotheses, the data-generating distributions are assumed to belong to uncertainty sets constructed through moments; in particular, the sets contain distributions whose moments are centered around the empirical moments obtained from training samples. The goal is to design a test that performs well under all distributions in the uncertainty sets, i.e., minimize the worst-case error probability over the uncertainty sets. In the finite-alphabet case, the optimal test is obtained. In the infinite-alphabet case, a tractable approximation to the worst-case error is derived that converges to the optimal value using finite samples from the alphabet. A test is further constructed to generalize to the entire alphabet. An exponentially consistent test for testing batch samples is also proposed. Numerical results are provided to demonstrate the performance of the proposed robust tests.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.