Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Discriminative Language Model as Semantic Consistency Scorer for Prompt-based Few-Shot Text Classification (2210.12763v1)

Published 23 Oct 2022 in cs.CL, cs.AI, and cs.LG

Abstract: This paper proposes a novel prompt-based finetuning method (called DLM-SCS) for few-shot text classification by utilizing the discriminative LLM ELECTRA that is pretrained to distinguish whether a token is original or generated. The underlying idea is that the prompt instantiated with the true label should have higher semantic consistency score than other prompts with false labels. Since a prompt usually consists of several components (or parts), its semantic consistency can be decomposed accordingly. The semantic consistency of each component is then computed by making use of the pretrained ELECTRA model, without introducing extra parameters. Extensive experiments have shown that our model outperforms several state-of-the-art prompt-based few-shot methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.