Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Self-supervised Graph-based Point-of-interest Recommendation (2210.12506v1)

Published 22 Oct 2022 in cs.LG

Abstract: The exponential growth of Location-based Social Networks (LBSNs) has greatly stimulated the demand for precise location-based recommendation services. Next Point-of-Interest (POI) recommendation, which aims to provide personalised POI suggestions for users based on their visiting histories, has become a prominent component in location-based e-commerce. Recent POI recommenders mainly employ self-attention mechanism or graph neural networks to model complex high-order POI-wise interactions. However, most of them are merely trained on the historical check-in data in a standard supervised learning manner, which fail to fully explore each user's multi-faceted preferences, and suffer from data scarcity and long-tailed POI distribution, resulting in sub-optimal performance. To this end, we propose a Self-s}upervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation. In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs to uncover the transitional dependencies among POIs and capture a user's temporal interests. In order to counteract the scarcity and incompleteness of POI check-ins, we propose a novel self-supervised learning paradigm in \ssgrec, where the trajectory representations are contrastively learned from two augmented views on geolocations and temporal transitions. Extensive experiments are conducted on three real-world LBSN datasets, demonstrating the effectiveness of our model against state-of-the-art methods.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.