Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Flexible-Frame-Rate Vision-Aided Inertial Object Tracking System for Mobile Devices (2210.12476v1)

Published 22 Oct 2022 in cs.CV and cs.RO

Abstract: Real-time object pose estimation and tracking is challenging but essential for emerging augmented reality (AR) applications. In general, state-of-the-art methods address this problem using deep neural networks which indeed yield satisfactory results. Nevertheless, the high computational cost of these methods makes them unsuitable for mobile devices where real-world applications usually take place. In addition, head-mounted displays such as AR glasses require at least 90~FPS to avoid motion sickness, which further complicates the problem. We propose a flexible-frame-rate object pose estimation and tracking system for mobile devices. It is a monocular visual-inertial-based system with a client-server architecture. Inertial measurement unit (IMU) pose propagation is performed on the client side for high speed tracking, and RGB image-based 3D pose estimation is performed on the server side to obtain accurate poses, after which the pose is sent to the client side for visual-inertial fusion, where we propose a bias self-correction mechanism to reduce drift. We also propose a pose inspection algorithm to detect tracking failures and incorrect pose estimation. Connected by high-speed networking, our system supports flexible frame rates up to 120 FPS and guarantees high precision and real-time tracking on low-end devices. Both simulations and real world experiments show that our method achieves accurate and robust object tracking.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube